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Abstract

Riesenhuber & Poggio recently proposed a model of object recognition in cortex which, beyond integrat-
ing general beliefs about the visual system in a quantitative framework, made testable predictions about
visual processing. In particular, they showed that invariant object representation could be obtained with a
selective pooling mechanism over properly chosen afferents through a MAX operation: For instance, at the
complex cells level, pooling over a group of simple cells at the same preferred orientation and position in
space but at slightly different spatial frequency would provide scale tolerance, while pooling over a group
of simple cells at the same preferred orientation and spatial frequency but at slightly different position in
space would provide position tolerance. Indirect support for such mechanisms in the visual system comes
from the ability of the architecture at the top level to replicate shape tuning as well as shift and size invari-
ance properties of “view-tuned cells” (VTUs) found in inferotemporal cortex (IT), the highest area in the
ventral visual stream, thought to be crucial in mediating object recognition in cortex. There is also now
good physiological evidence that a MAX operation is performed at various levels along the ventral stream.
However, in the original paper by Riesenhuber & Poggio, tuning and pooling parameters of model units
in early and intermediate areas were only qualitatively inspired by physiological data. Many studies have
investigated the tuning properties of simple and complex cells in primary visual cortex, V1. We show that
units in the early levels of HMAX can be tuned to produce realistic simple and complex cell-like tuning,
and that the earlier findings on the invariance properties of model VTUs still hold in this more realistic
version of the model.
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1 Introduction

Extending previous models of object recognition in cor-
tex [1, 2], Riesenhuber & Poggio have shown that in-
variant object representations (similar to the ones found
in inferotemporal (IT) cortex) could be explained by the
combined action of two operations:

A weighted linear summation i.e., units performing a
weighted linear summation (followed by a Gaus-
sian nonlinearity) over afferents tuned to different
features (equivalent to template matching) would
be well suited to explain the increase in complex-
ity of the optimal stimulus driving cells en route to
object recognition.

A MAX operation i.e., units performing a non-linear
MAX operation over afferents tuned to slightly dis-
torted versions of the same feature (shifted and
rescaled) should provide the substrate for building
increasingly invariant representations.

In a benchmark simulation [3], Riesenhuber & Pog-
gio “recorded” from the HMAX model (see Fig. 1) and
showed that the range of invariances exhibited by the
model VTUs (named after the view-tuned units in IT)
was compatible with shift, size and depth rotation tun-
ing properties of view-tuned cells [3, 4].

Additionally, biophysically plausible implementa-
tions of the MAX operation have been proposed [5] and
neurons performing a MAX operation have been found
in area V4 in the primate [6], and very recently also in
complex cells in cat visual cortex [7]. The latter study
showed that, consistent with the model prediction, the
response of complex cells elicited by the simultaneous
presentation of two bars (one optimal and one non-
optimal), closely matches the response of the cells when
presented with the optimal stimulus alone.

In the original paper by Riesenhuber & Poggio, tun-
ing and pooling parameters of model units in early and
intermediate areas were only qualitatively inspired by
physiological data. In particular, many studies have in-
vestigated the tuning properties of simple and complex
cells in primary visual cortex V1. We now take a de-
tailed look at the compatibility of the model with pop-
ulation tuning at the simple and complex cells level.

We start by improving the fit between model sim-
ple (S1) units (whose tuning properties in the original
model were chosen to just qualitatively resemble V1
simple cell shape) and the experimental data. In par-
ticular, we show that a better account of the simple cells
population spread of tuning can be obtained with prop-
erly parameterized Gabor functions.

We further show that starting with a representative
distribution of simple cell tuning properties, it is possi-
ble to adjust two of the main model parameters (spa-
tial and frequency extent of the afferent simple cells,
see Fig.1) such that the corresponding set of complex

(C1) units tuning properties is compatible with the V1
complex cells. In particular, we find that the increase
in receptive field size [8] and spatial frequency band-
width [9, 10] could be well accounted by the pooling
mechanisms proposed in HMAX in order to gain size
and shift tolerance at the C1 level.

As a benchmark for our model units, we consider
tuning properties of parafoveal cells in monkey as re-
ported by two groups: De Valois et al. [9, 11] and
Schiller et al. [10, 12, 13].∗ Focusing on this new set of
S1 and C1 cells, we use a benchmark paperclip recog-
nition task as in [3, 4] and show that the model is still
able to replicate tuning properties of view-tuned cells in
IT, suggesting that the model is robust to changes in the
low levels.

2 Methods

2.1 Original HMAX

The precise architecture of HMAX has been described
in details elsewhere [3, 14–16] and we here only high-
lights important features of the model (see Fig. 1). We
first briefly describe the two first layers of HMAX under
study, that is, simple (S1) cells and complex (C1) cells.
We then highlight the other two layers of the model
(S2 and C2) for further understanding on training the
VTUs in the benchmark recognition task (sections 2.3.5
and 3.3).

Simple (S1) cells. Input images (160 × 160 gray im-
ages corresponding to 4.4◦ of visual angle, see [14]) are
densely sampled by arrays of two-dimensional filters
Gx,y (second derivative of Gaussians) that can be ex-
pressed as:

Gx,y =
(−x cos θ + y sin θ)2

σ2(σ2 − 1)

exp (−
(x cos θ + y sin θ)2 + (−x cos θ + y sin θ)2

2σ2
).

Table 1 details the values of the two filters parame-
ters: orientation θ and width σ. The response of the
so-called S1 units, sensitive to bars of different orien-
tations, thus roughly resembling properties of simple
cells in striate cortex, is given by centering filters of
each size and orientation at each pixel of the input im-
age. The filters are sum-normalized to zero and square-
normalized to 1 so that S1 cells activity is between -1
and 1, modeling simple cells of phase 0 and π.

While non-biological (both in its implementation and
because it neglects the response saturation of V1 cells

∗We considered parafoveal cells, as further studies of
higher brain areas (V4, for instance) mostly focused on
parafoveal cells population, although differences between the
two groups are not always significant: Parafoveal cells tend to
have slightly larger receptive fields, are slightly more broadly
tuned to spatial frequency and tend to be tuned to lower-
spatial frequencies.
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observed at high contrast [17–19]), this simplification is
convenient and does not interfere in our experiments as
we work with fixed contrast. Fig. 2 shows all simple
(S1) cells receptive field types used in standard HMAX.

Complex (C1) cells. One prediction made by the
model is that complex cells are phase invariant as well
as size and position tolerant. Fig. 1 describe how size
and position invariance are increased in the model. The
mechanisms rely on a non-linear MAX operation (or its
soft-MAX approximation, [14]) over properly chosen af-
ferents, i.e., a C1 unit’s activity is determined by the
strongest input it receives.

For instance, pooling over simple (S1) cells at the
same preferred orientation but responding to bars of
different lengths, provide invariance with respect to
changes in size (see Fig. 1 B.). The amount of invariance
gained is determined by the range of sizes (or equiv-
alently spatial frequency selectivities) over which the
MAX is performed. We call this filter bands, i.e., groups
of S1 filters of a certain size range. In standard HMAX ,
four filter bands are used in which filter sizes are within
the range:

ScaleRange = {7 − 9; 11 − 15; 17 − 21; 23− 29} (1)

Similarly, position invariance is increased by pool-
ing over S1 cells at the same preferred orientation but
whose receptive fields are centered on neighboring lo-
cations, i.e., within each filter band, a pooling range is
defined which determines the size of the array of neigh-
boring S1 units of all sizes in that filter band which feed
into a C1 unit (see Fig. 1 A.). It is important to mention
that only S1 filters with the same preferred orientation
feed into a given C1 unit to preserve feature specificity.
In standard HMAX , the pooling ranges for each of the
four filter bands are such that:

PoolRange = {4; 6; 9; 12} (2)

As a result, a C1 unit responds best to a bar of the
same orientation as the S1 units that feed into it, but
already with an amount of spatial and size invariance
that corresponds to the spatial and filter size pooling
ranges used for a C1 unit in the respective filter band.
Additionally, C1 units are invariant to contrast reversal,
much as complex cells in striate cortex, by pooling over
on and off simple cells (before performing the MAX op-
eration). Possible firing rates of a C1 unit thus range
from 0 to 1.

S2 cells. A square of four adjacent, non-overlapping
C1 units belonging to the same filter band, in a 2× 2 ar-
rangement, is grouped to provide input to each S2 unit.
There are 256 different types of S2 units in each filter
band, corresponding to the 44 possible arrangements of
four C1 units of each of four types (i.e., preferred bar ori-
entation). The S2 unit response function is a Gaussian
with mean 1 (i.e., {1, 1, 1, 1}) and standard deviation 1,

i.e., an S2 unit has a maximal firing rate of 1 which is
attained if each of its four afferents fires at a rate of 1 as
well. S2 units provide the feature dictionary of HMAX ,
in this case all combinations of 2 × 2 arrangements of
“bars” (more precisely, C1 cells) at four possible orien-
tations.

It is worth noting that those choices of S2 units’ pa-
rameters remain somewhat arbitrary. This reflects the
lack of a precise characterization of the response prop-
erties of cells in intermediate layers of visual cortex. In-
deed, current work is trying to improve the fit between
S2 units in HMAX and biological neurons in V4 [20, 21].
We also showed in [22] that S2 units centers could be
learned in order to perform robust real-world object
recognition.

C2 cells. To finally achieve size invariance over all fil-
ter sizes in the four filter bands and position invari-
ance over the whole input image, the S2 units are again
pooled by a MAX operation to yield C2 units, the output
units of the HMAX core system, designed to correspond
to neurons in extrastriate visual area V4 or posterior IT
(PIT). There are 256 C2 units, each of which pools over
all S2 units of one type at all positions and scales. Con-
sequently, a C2 unit will fire at the same rate as the most
active S2 unit that is selective for the same combination
of four bars, but regardless of its scale or position.

View-tuned units. C2 units in turn provide input to
the view-tuned units (VTUs), named after their prop-
erty of responding well to a specific two-dimensional
view of a three-dimensional object, thereby closely re-
sembling the view-tuned cells found in monkey infer-
otemporal cortex by Logothetis et al. [4]. The C2 → VTU
connections are so far the only stage of the HMAX model
where learning occurs (but see [22] for a method to learn
S2 features with HMAX in the context of an object detec-
tion task).

A VTU is tuned to a stimulus by selecting the activi-
ties of the N C2 units (all 256 or a subset) in response to
that stimulus as the center of an N -dimensional Gaus-
sian response function, yielding a maximal response of
1 for a VTU in case the C2 activation pattern exactly
matches the C2 activation pattern evoked by the train-
ing stimulus †.

2.1.1 New HMAX

S1 cells. We here motivate the use of Gabor func-
tions to model simple cells receptive field instead of
the Gaussian derivatives as in standard HMAX. For the
past decade, Gabor filters have been extensively used to

†We here consider the simplest way to train a set of VTUs
from data as in [3]. The method is closely related to RBF net-
works for which a function is approximated by a weighted
sum of basis functions centered on each data points (or a sub-
set of the training data). More complex schemes include a
search of the VTU centers as in generalized RBF network for
instance.
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Figure 1: Left: Schematic of the model. Two types of computations i.e., linear summation and non-linear MAX

operation alternate between layers. Input images are first densely sampled by arrays of two-dimensional filters at
four different orientations, the simple (S1) units. Within a pooling band, S1 cells (i.e., a group of cells at the same
preferred orientation but at slightly different scales and positions, see text) feed into complex (C1) cells through a
MAX operation (see right figure for illustration). In the next (S2) level, and within each filter band, a square of four
adjacent, non overlapping C1 units in a 2 × 2 arrangement is grouped to provide input to an S2 unit. To finally
achieve size invariance over all filter sizes in the four filter bands and position invariance over the whole input
image, the S2 units are again pooled by a MAX operation to yield C2 units that again provide input to the view-
tuned units (VTUs). Right: Schematic of how size and shift tolerances are increased at the (C1) level: A complex
(C1) cell pools over S1 cells (within a pooling band, see text) at the same orientation but A) centered at different
location thus providing some translation invariance and B) at different scales providing some scale invariance to
the complex cell.

Figure 2: Top: Model simple cells receptive field used in standard HMAX [14]. Receptive field sizes range from 0.19o

to 0.8o at four different orientations. Bottom: Modeling simple cells receptive field with Gabor functions. Receptive
field sizes range from 0.19o to 1.07o at four different orientations. In order to obtain receptive field sizes within
the bulk of the simple cell receptive fields (0.1◦ -1◦ ) reported in [8, 12], we cropped the Gabor receptive fields and
applied a circular mask so that, for a given parameter set (λ, σ), cell tuning properties are independent of their
orientations. Note that receptive fields were set on a gray background for display only and so that relative sizes
were preserved.
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model the receptive fields of simple cells. Gabor func-
tions have been shown to be solutions of an optimiza-
tion problem that is minimizing simultaneously uncer-
tainty in both position and spatial frequency [23] and to
fit well with physiological data recorded from cat striate
cortex [24]. We here motivate the use of Gabor functions
to model cortical simple cell receptive fields because
they have more free parameters and allow more ac-
curate tuning than their homologue (Gaussian deriva-
tives) used in standard HMAX (see section 3 for a com-
parison between the two).

Placing the origin of the x and y axis coordinates at
the center of the receptive field, the filter response is
given by:

Gx,y = exp

(

−
(x cos θ + y sin θ)2 + γ2(−x sin θ + y cos θ)2

2σ2

)

× cos

(

2π
1

λ
(x cos θ + y sin θ) + φ

)

.

The five parameters, i.e., orientation θ, aspect ratio
γ, effective width σ, phase φ and wavelength λ deter-
mine the properties of the cells spatial receptive fields.
The tuning of simple cells in cortex along these dimen-
sions varies substantially. Rather than attempting to
replicate the precise distribution (which differs between
the different studies), our aim is to show that model S1
unit tuning can capture more robust statistics (such as
sample mean or median) and the range of experimental
neurons.

As in standard HMAX, we considered four orienta-
tions only (θ = 0◦ , 45◦ , 90◦ , and 135◦ ). This is an over-
simplification but this has been shown to be sufficient
to provide rotation and size invariance at the VTU level
in good agreement with recordings in IT [3]. φ was set
to 0◦ while different phases are crudely approximated
by centering receptive fields at all locations.

In order to obtain receptive field sizes consistent with
values reported for parafoveal simple cells [12], we in-
creased the number of filter sizes covered with standard
HMAX leading to 17 filters sizes from 7 × 7 (0.19◦ visual
angle) to 39 × 39 (1.07◦ visual angle) obtained by steps
of two pixels instead of the 12 filters sizes ranging be-
tween 7×7 (0.19◦ visual angle) and 29×29 (0.80◦ visual
angle) as in standard HMAX .

When fixing the values of the remaining 3 parameters
(γ, λ and σ), we tried to account for general cortical cell
properties, that is: (i) Cortical cells’ peak frequency se-
lectivities are negatively correlated with their receptive
field sizes [10]. (ii) Cortical cells’ spatial frequency se-
lectivity bandwidths are positively correlated with their
receptive field sizes [10]. (iii) Cortical cells orientation
bandwidths are positively correlated with their recep-
tive field sizes [13].

We empirically found that one way to account for
all three properties was to include fewer cycles in the
units’ receptive fields as their sizes (RF size) increase.
We found that the two following (ad hoc) formulas gave
good agreement with the tuning properties of cortical
cells:

σ = 0.0036 ∗ RF size2 + 0.35 ∗ RF size + 0.18 (3)

λ =
σ

0.8
(4)

Table 1 gives the values of parameters that determine
Gabor filter tuning properties and how they differ from
those in standard HMAX (Gaussian derivatives).

For all cells with a given set of parameters (λ0, σ0)
to share similar tuning properties at all orientations, we
applied a circular mask to the Gabor filters (see Fig. 2
bottom) which was not done in standard HMAX . Crop-
ping Gabor filters to a smaller size than their effective
length and width, we found that the aspect ratio γ had
only a limited effect on the cells tuning properties and
was fixed to 0.3 for all filters.

C1 cells. In order to better account for complex cells
tuning properties, we assigned new values to the two
parameters ScaleRange and PoolRange that control the
filter bands in HMAX (see section 2.1). The number of
filter bands was increased from 4 to 8 while the number
of filters within each filter bands was decreased (from
3 to 2 in each band) thus providing less scale toler-
ance (therefore narrower spatial frequency bandwidth)
to complex cells. Values for the PoolRange variables
varied from 8 to 22 and new values were assigned to
ScaleRange:

PoolRange = {8; 10; 12; 14; 16; 18; 20; 22} (5)

ScaleRange = {7 − 9; 11 − 13; 15− 17; 19 − 21;

23 − 25; 27− 29; 31 − 33; 35− 39} (6)

standard HMAX Gabor filters

RF size 7 × 7 → 29 × 29 7 × 7 → 39 × 39

(receptive field size) 12 filters in steps of 2 17 filters in steps of 2

θ (orientation) 0, π

4
, π

2
, 3π

4
0, π

4
, π

2
, 3π

4

σ RF size/4 aRF size2 + bRF size + c

a = 0.0036; b = 0.35; c = 0.18

(effective width) 1.8-7.3 2.8-19.5

γ (aspect ratio) 1 0.3

λ N/A σ/0.8

(wavelength) N/A 3.5-24.4

Table 1: Comparison between parameters used in stan-
dard HMAX to model simple (S1) cells with Gaussian
derivatives and the ones used to model simple (S1) cells
with Gabor filters to better account for properties of
parafoveal simple cells.
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Figure 3: Top: Filters (Gabor (left) and Gaussian deriva-
tives (right)) and preferred bar stimulus superimposed.
Bottom: Corresponding orientation tuning curves ob-
tained with optimal bars, gratings and edges. The three
stimuli produced similar curves with Gabor filters but
not with Gaussian derivatives as simple (S1) units tend
to select shorter and wider bars.

2.2 Assessing model unit tuning properties

2.2.1 Orientation tuning

Orientation tuning was assessed in two ways: First,
following [11], we swept sine wave gratings of opti-
mal frequency over the receptive field of a model unit
at thirty-six different orientations (spanning 180o of the
visual field in steps of 5o). For each cell tested, the
maximum response elicited for each orientation was
recorded to fit a tuning curve and the orientation band-
width at half-amplitude was calculated. For compari-
son with [13], we also swept edges and bars of optimal
dimensions: For each cell the orientation bandwidth at
71% of the maximal response was calculated as in [13].

Sweeping edges, bars and gratings gave similar tun-
ing curves for Gabor filters, suggesting that if simple
cells can be well modeled by Gabor filters, measure-
ments made by groups with different stimuli (bars,
grating and edges) are indeed consistent. Bar stimuli
with Gaussian derivatives as in standard HMAX , how-
ever lead to inconsistent tuning curves compared with
edges and gratings, indicating that Gaussian deriva-
tives are a poor model of simple cell processing.

2.2.2 Spatial frequency tuning

Spatial frequency selectivity was assessed by sweep-
ing sine wave gratings of various spatial frequencies
over a model unit’s receptive field. For each grating
frequency, the maximal cell response was recorded to
fit a tuning curve and the spatial frequency selectivity
bandwidth was calculated as in [9] by dividing the fre-
quency score at the high crossover of the curve at half-
amplitude by the low crossover at the same level.

Taking the log2 of this ratio gives the bandwidth
value (in octaves):

bandwidth = log2

high cut

low cut
(7)

For comparison with [10], we also calculated the selec-
tivity index as defined in [10], by dividing the frequency
score at the high crossover of the curve at 71% of the
maximal amplitude by the low crossover at the same
level and multiplying this value by 100 (a value of 50
representing a specificity of 1 octave):

selectivity index =
high cut

low cut
× 100 (8)

2.3 Benchmark paperclip recognition task

2.3.1 Stimuli

To test translation, size and rotation invariance prop-
erties of the VTUs, we used 80 out of a set of 200 “paper-
clip” stimuli (20 targets, 60 distracters) similar to those
used previously in [3, 4]. Examples of paperclip stimuli
are shown in Fig. 4. The background pixel value was
always set to zero (contrast 100%), as in [3, 4].

2.3.2 Shift

To examine shift invariance, we trained VTUs to each
of the 20 target paperclips at size 64 × 64 pixels, posi-
tioned at the center of the 160 × 160 pixel input image.
We then calculated C2 and VTU responses for all pa-
perclips at eight random positions around the reference
position. An example of tested positions for one paper
clip (positions varied from one paperclip to another) is
shown Fig. 4a.

2.3.3 Scaling

To examine size invariance, we trained VTUs to each
of the 20 target paperclips at size 64 × 64 pixels, po-
sitioned at the center of the 160 × 160 pixel input im-
age. We then calculated C2 and VTU responses for
all paperclips at different sizes, in quarter-octave steps
(i.e., squares with edge lengths of 27, 32, 38, 45, 54, 64,
76, 91 108, 129 and 154 pixels), again positioned at the
center of the 160 × 160 input image. Examples of three
paperclips rescaled by ± 1 octave from reference (cen-
ter) are shown in Fig. 4b.

2.3.4 Rotation

To examine invariance to rotation in depth, we
trained VTUs to each of the 20 target paperclips at
0◦ rotation and size 64×64 pixels, positioned at the cen-
ter of the input image (160 × 160). We then calculated
C2 and VTU responses for all paperclips at different ro-
tations from the origin (± 50◦ by steps of 4◦ ). Examples
of three paperclips at -20◦ , 0◦ and +20◦ are shown in
Fig. 4c.
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a) b) c)

Figure 4: Stimulus transformations to test a) shift invariance (all tested positions), b) scaling invariance (each row
shows a reference paperclip rescaled by ± 1 octave -left and right-) and c) 3-D rotation invariance (reference paper-
clip rotated by ± 20◦ -left and right-). For all invariance tests, the reference is the 64 × 64 pixel center paperclip.

2.3.5 Task

To assess the degree of invariance to stimulus trans-
formations, we used a paradigm similar to the one used
in [3, 4], in which a transformed (rescaled or rotated
in depth) target stimulus is considered recognized in a
certain presentation condition if the VTU tuned to the
original target (default size and view), responds more
strongly to its presentation than to the presentation of
any distracter stimulus. This measures the hit rate at
zero false positives.

3 Results

3.1 Original HMAX

3.1.1 Spatial frequency tuning

S1 units. We found that simple cells in origi-
nal HMAX were too broadly tuned to spatial fre-
quency: Spatial frequency bandwidth measured at half-
amplitude was about 1.7 octaves for all units. De Valois
et al. report a median value of 1.32 [9]) for parafoveal
simple cells, with most cells lying around 1-1.5 octaves.
We found a similar discrepancy between model units
and cortical cells from data collected by Schiller et al.
who report spatial-frequency selectivity index values in
the range of 40-80. (HMAX cells index values vary be-
tween 34 and 41).

Because Gaussian derivatives only have one free pa-
rameter, we found it impossible to have them match
both simple cells spatial frequency distribution and
bandwidth. Setting σ so that spatial frequency se-
lectivities of the two populations match [9] (1-5.6 for
parafoveal cells vs. 1.4-5.8 cycles/degree as in standard
HMAX ) lead to overly broad spatial frequencies tuning
profiles while setting σ so that spatial frequencies band-
width match lead to peak frequencies too high. This
motivates the use of functions with more degrees of
freedom such as Gabor functions.

C1 units. Similarly, we found that complex cells were
too broadly tuned to spatial frequency with a me-
dian spatial frequency bandwidth measured at half-
amplitude around 2.1 octaves (range: 2.0-2.2 octaves)

which is high compared to a value of 1.6 for Y cells
parafoveal reported in [9]. Similarly, the spatial fre-
quency index was around 30 and therefore lay outside
the bulk (30-70) reported in [10].

3.1.2 Orientation tuning

S1 units. As in section 3.1.1 for spatial frequency, we
found that Gaussian derivatives could not account for
simple cell orientation tuning properties. Measured at
half-amplitude, we found an orientation tuning band-
width of 97◦ for all cells while De Valois et al. report a
median value of 34◦ (range 20◦ - 90◦ ). Even though the
value reported is surprisingly low (parafoveal simple
cells would thus be more narrowly tuned than foveal
simple and complex cells), the discrepancy is still large
when compared to data collected by Schiller et al. who
report a bulk in the range 20◦ -50◦ [13] (measured at
71% of the maximal response with edges and bars)
whereas HMAX unit orientation bandwidth calculated
in this way was about 69◦ .

C1 units. Consistent with the fact that all model sim-
ple cells share similar orientation tuning properties and
since complex cells pool over simple cells at the same
preferred orientation, we found that HMAX C1 orienta-
tion tuning was identical to those of S1 units (97◦ at half
amplitude and 69◦ at 71% max amplitude).

3.2 New HMAX with Gabor filter sets

3.2.1 Spatial frequency tuning

S1 units. As described in section 2.1.1, Gabor filter
peak frequencies are parameterized by the inverse of
their wavelength ν = 1

λ (i.e., the wavelength of the
modulating sinusoid). We found that the values mea-
sured experimentally by sweeping optimally oriented
gratings were indeed close to ν. As expected (see sec-
tion 2.1.1), we also found a positive correlation between
receptive field size and frequency bandwidth, as well
as a negative correlation with peak frequency selectiv-
ities, which is consistent with recordings made in pri-
mate striate cortex [9, 10].
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a) b)

Figure 5: Coverage of the spatial frequency plane by Gabor function (a) and Gaussian derivatives as in standard
HMAX (b). The length of the ellipses along the 4 axes of orientation ( π

4
, π

2
, 3π

4
, π) indicate the filter frequency band-

width and their widths, the filter orientation bandwidth (both measured at half-amplitude). The new S1 cells are
more tightly tuned for both orientation and frequency but cover a wider range of spatial frequencies.

Model units’ peak frequencies were in the range 1.6-
9.8 cycles/degree (mean and median value of 3.7 and
2.8 cycles/degree respectively). This provides a reason-
able fit with cortical simple cells peak frequencies lying
between values as extreme as 0.5 and 8.0 degree/cycles
but a bulk around 1.0-4.0 cycles/degree (mean value of
2.2 cycles/degree) [9]. Indeed, using our formula (3) to
parameterize Gabor filters (see section 2.1.1), a cell with
a peak frequency around 0.5 cycles/degree would have
a receptive field size of about 2◦ which is very large
compared to values reported in [8, 12] for simple cells.

Spatial frequency bandwidths measured at half-
amplitude were all in the range 1.1-1.8 octaves, which
corresponds to a subset of the range exhibited by cor-
tical simple cells (values reported as extreme as 0.4 to
values above 2.6 octaves). For the sake of simplicity,
we tried to capture the range of “bulk frequency band-
widths” (1-1.5 octaves for parafoveal cells) and focused
on population median values (1.45 for both cortical [9])
and model cells). For comparison with Schiller et al. , we
measured the spatial frequency index and found values
in the range 44-58 (median 55) which lies right in the
bulk (40-70) reported in [10].

C1 units. Peak frequencies ranged from 1.8 to 7.8 cy-
cles/degree (mean value and median values of 3.9 and
3.2 respectively) for our model complex cells. In [9],
peak frequencies range between values as extreme as
0.5 and 8 cycles/degree with a bulk of cells lying be-
tween 2-5.6 cycles/degree (mean around 3.2).

We found spatial frequency bandwidths at half-
amplitude in the range 1.5-2.0 octaves. Parafoveal com-
plex cells lie between values as extreme as 0.4 to val-
ues above 2.6 octaves. Again, we tried to capture the
bulk frequency bandwidths ranging between 1.0 and
2.0 octaves and matched the median values for the pop-

ulations of model and cortical cells [9] (1.6 octaves for
both). The spatial frequency bandwidth at 71% maxi-
mal response were in the range 40-50 (median 48) which
lies within the bulk (40-60) reported in [10]. Fig 6 shows
the complex vs. simple cells spatial frequency band-
widths.

3.2.2 Orientation tuning

S1 units. We found a median orientation bandwidth
at half amplitude of 44◦ (range 38◦ -49◦ ). In [11], a me-
dian value of 34◦ is reported. Again, as already men-
tioned earlier, this value seems surprising (it would im-
ply that parafoveal cells are more tightly tuned than
their foveal homologue, both simple (median value
42◦ ) and complex (45◦ ). When we used instead a mea-
sure of the bandwidth at 71% of the maximal response
for comparison with Schiller et al. , the fit was better
with a median value of 30◦ (range: 27◦ -33◦ ) compared
with a bulk of cortical simple cells within 20◦ -70◦ [13].

C1 units. We found a median orientation bandwidth
at half amplitude of 43◦ which is in excellent agree-
ment with the 44◦ reported in [11]. The bulk of cells
reported in [13] is within 20◦ -90◦ and our values range
between 27◦ -33◦ (median 31◦ ), therefore placing our
model units as part of the most narrowly tuned sub-
population of cortical complex cells. As in both exper-
imental data sets, the orientation tuning bandwidth of
the model complex units is very similar to that of simple
units.

3.2.3 Summary

We found that model simple S1 cells in the original
HMAX were too broadly tuned to both orientation and
spatial frequency compared to cortical simple cells (see
section 3.1). We motivated the use of Gabor filters for
simple S1 cells and empirically determined a set of pa-
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Figure 6: Complex cells spatial frequency bandwidth
vs. simple cells spatial frequency bandwidth. There
is an increase of about 20% from simple to com-
plex cells spatial frequency bandwidth, consistent with
parafoveal cortical cells [9, 10].

rameters so that model simple cells tuning properties
match those of cortical simple cells (see section 3.2).

The new set of S1 cells differ from S1 cells in stan-
dard HMAX with respect to their orientation bandwidth
(median 46◦ vs. 97◦ in standard HMAX ), their peak fre-
quencies selectivity (1.6-9.8 cycles/degree vs. 1.4-5.8 cy-
cles/degree for standard HMAX ), frequency selectivity
bandwidth (median 1.47 vs. 1.7 in standard HMAX ) and
receptive field sizes (0.2◦ -1.1◦ vs. 0.2◦ -0.8◦ in standard
HMAX ). The new set of S1 cells is more narrowly tuned
to both spatial frequency and orientation, span a larger
range of frequencies and receptive field sizes (see Fig. 5)
and match more closely parafoveal simple cells tuning
properties.

It also appeared from our study that the pooling
mechanisms inferred in the model for building com-
plex cells from simple cells are indeed consistent with
complex cells tuning properties. A comparison between
HMAX and parafoveal complex cells, showed that po-
sition invariance (parameterized by the variable Pool-
Range (see section 2.1) is actually larger than in standard
HMAX, while scale invariance (parameterized by the
variable ScaleRange (see section 2.1) is actually smaller
than in standard HMAX.

The new set of C1 cells differ from C1 cells in stan-
dard HMAX in terms of their orientation bandwidth
(median 43◦ vs. 97◦ in standard HMAX ), their peak fre-
quencies selectivity (1.8-7.8 cycles/degree vs. 1.6-5.6 cy-
cles/degree for standard HMAX ), frequency selectivity
bandwidth (median 1.6 vs. 2.1 in standard HMAX ) and
receptive field sizes (0.4◦ -1.7◦ vs. 0.3◦ -1.1◦ in standard
HMAX ). The new set of C1 cells is more narrowly tuned
to both spatial frequency and orientation, span a larger
range of frequencies (see Fig. 5) and match more closely
parafoveal complex cells tuning properties.

3.3 Performance on a benchmark recognition task

To investigate the impact of this new representation
on the VTUs’ shape specificity as well as invariance
to shift, size and rotation, we performed a bench-
mark recognition task with paperclip stimuli (see sec-
tion 2.3.5) similar to the one used in [3, 4] and found
that invariance properties were maintained. This sug-
gests that the architecture in HMAX is robust to changes
in the tuning properties of cells at the entry-level.

VTUs with the new sets of S1 and C1 units had
a mean invariance to rotation in depth of about
34◦ (reference being on the same task 33◦ for HMAX and
29◦ reported by [4] for IT cells). For size invariance, we
found a bandwidth of about 2.8 octaves (reference be-
ing at least 2.4 octaves for standard HMAX and about
2 octaves for IT cells [3]). Translation invariance was
maintained with respect to all positions tested across
the units receptive field compared to distracters at the
center of the receptive field.

We also quantified the effect of the complex (C1)
units receptive field size (controlled by the variable
PoolRange, see section 2.1) on VTU scale invariance
properties. We found that larger complex cells receptive
field sizes lead to larger scale invariance at the VTUs
level (see Fig. 7).

4 Discussion

4.1 Impact of the new S1 and C1 cells population on
HMAX architecture

We proposed a new set of receptive field shapes and
parameters for cells in the S1 and C1 layers of HMAX .
We increased position invariance (parameterized by
the variable PoolRange, see section 2.1) in model C1
cells while scale invariance (parameterized by the vari-
able ScaleRange) was decreased compared to standard
HMAX.

We showed that invariance properties at the VTU
level were not substantially affected by these changes,
indicating that the model appears to be robust to
changes in the lower level of the hierarchy. Thus there
exists a number of different pooling schemes between
S1 and C2 cells that still account for VTU invariance
properties.

We showed that a mechanism in which cells pool
over afferents tuned to the same preferred features but
at slightly different positions and scales is well suited
to explain the increase in receptive field size and spa-
tial frequency bandwidth from simple to complex cells.
As we mentioned in section 2.1, the following S2 layer
in the model (equivalent to V4 in primate cortex) was
only qualitatively inspired by physiological data. Fur-
ther studies should focus on intermediate visual areas
such as V4 in which it was shown that the increase in
receptive field sizes and spatial frequency bandwidth
are even more pronounced.
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Figure 7: Effect of the variable PoolRange on VTU scale
invariance properties. Plotted are the mean VTU scale
invariance vs. the increase in receptive field size from
simple to complex cells when increased by step of 2 and
4 between pooling bands.

Schein & Desimone showed that the spatial fre-
quency bandwidth median value at the V4 level was
about 2.2 octaves [25] (which represents an increase of
about 40% from the complex cells population). It is
not clear whether this remains consistent with the four
layer architecture of HMAX and further investigation on
C2 units tuning properties should be performed. Also
it has been shown in [25] that V4 contains cells cov-
ering a wide range of tuning properties (from 0.5 to
> 4.0 octaves spatial frequency bandwidths). Although
this could be an artifact of their methods (probing cells
with the wrong stimuli), it is possible that direct pooling
from C1 to C2 should be added.

We have thus shown that the physiological data on
simple and complex cell receptive field size, spatial fre-
quency and orientation bandwidth are in good agree-
ment with the model hypothesis of complex cells per-
forming a MAX pooling over simple cell afferents, a key
step in the model towards invariant object recognition.

Invariance, i.e., the ability to recognize a pattern un-
der various transformations, is one goal of object recog-
nition, another one being specificity, i.e., the ability to
discriminate between different patterns. The next chal-
lenge is to understand how shape complexity is in-
creased along the ventral visual stream, from the Gabor-
like preferred stimuli in V1 to neurons tuned to complex
real-world stimuli such as faces and hands in IT.
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